Part Number Hot Search : 
08100 160EK2 5A31A LYT4312 U6472Z6 FX203 BCM112X LYT4312
Product Description
Full Text Search
 

To Download W39V040A Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 W39V040A 512K x 8 CMOS FLASH MEMORY WITH LPC INTERFACE
1. GENERAL DESCRIPTION
The W39V040A is a 4-megabit, 3.3-volt only CMOS flash memory organized as 512K x 8 bits. For flexible erase capability, the 4Mbits of data are divided into 8 uniform sectors of 64 Kbytes, which are composed of 16 smaller even pages with 4 Kbytes. The device can be programmed and erased in-system with a standard 3.3V power supply. A 12-volt VPP is not required. The unique cell architecture of the W39V040A results in fast program/erase operations with extremely low current consumption. This device can operate at two modes, Programmer bus interface mode and LPC bus interface mode. As in the Programmer interface mode, it acts like the traditional flash but with a multiplexed address inputs. But in the LPC interface mode, this device complies with the Intel LPC specification. The device can also be programmed and erased using standard EPROM programmers.
2. FEATURES
*
Single 3.3-volt Operations: - 3.3-volt Read - 3.3-volt Erase - 3.3-volt Program
* Hardware protection:
- Optional 16K byte or 64K byte Top Boot Block with lockout protection - #TBL & #WP support the whole chip hardware protection
* *
*
Fast Program Operation: - Byte-by-Byte programming: 35 S (typ.)
Flexible 4K-page size can be used as Parameter Blocks Low power consumption - Active current: 12.5 mA (typ. for LPC mode) Automatic program and erase timing with internal VPP generation End of program or erase detection - Toggle bit - Data polling
*
Fast Erase Operation: - Chip erase 100 mS (max.) - Sector erase 25 mS (max.) - Page erase 25 mS (max.) Fast Read access time: Tkq 11 nS Endurance: 10K cycles (typ.) Twenty-year data retention 8 Even sectors with 64K bytes each, which is composed of 16 flexible pages with 4K bytes Any individual sector or page can be erased
* *
* * * * *
* * *
Latched address and data TTL compatible I/O Available packages: 32L PLCC, 32L STSOP
-1-
Publication Release Date: December 19, 2002 Revision A2
W39V040A
3. PIN CONFIGURATIONS 4. BLOCK DIAGRAM
#WP #TBL CLK LAD[3:0] #LFRAM MODE #RESET
A 8 ^ G P I 2 v A 9 ^ G P I 3 v R / # C ^ C L K v A 1 0 ^ G P I 4 v
LPC Interface
BOOT BLOCK, 16K BYTES MAIN MEMORY SECTOR7, 64K BYTES 8K BYTES
7FFFF 7C000 PARAMETER BLOCK1, 7BFFF 7A000
PARAMETER BLOCK2, 79FFF 8K BYTES MEMORY BLOCK, 32K BYTES
MAIN MEMORY SECTOR6, 64K BYTES MAIN MEMORY SECTOR5, 64K BYTES
78000 77FFF 70000 6FFFF
# R E S V END TCD
R/#C A[10:0] DQ[7:0]
29 28 27 26 25 24 23 22 21 MODE Vss NC NC VDD #OE(#INIT) #WE(#LFRAM) NC DQ7(RSV)
MAIN MEMORY SECTOR4, 64K BYTES
43 A7(GPI1) A6(GPI0) A5(#WP) A4(#TBL) A3(RSV) A2(RSV) A1(RSV) A0(RSV) DQ0(LAD0) 5 6 7 8 9 10 11 12 13
2 1 32 31 30
Programmer Interface
MAIN MEMORY SECTOR3, 64K BYTES MAIN MEMORY SECTOR2, 64K BYTES MAIN MEMORY SECTOR1, 64K BYTES MAIN MEMORY SECTOR0, 64K BYTES
#OE #WE
60000 5FFFF 50000 4FFFF 40000 3FFFF 30000 2FFFF 20000 1FFFF 10000 0FFFF 00000
32L PLCC
5. PIN DESCRIPTION
SYM. MODE #RESET INTERFACE PGM * * LPC * * * * * * * * * * * * * * * * * * * * * * * Reset Initialize Top Boot Block Lock Write Protect CLK Input General Purpose Inputs Identification Inputs Address/Data Inputs LPC Cycle Initial Row/Column Select Address Inputs Data Inputs/Outputs Output Enable Write Enable Power Supply Ground Reserve Pins No Connection PIN NAME Interface Mode Selection
14 15 16 17 18 19 20 D Q 1 ^ L A D 1 v DVDDDD QSQQQQ 2S3456 ^ ^^^^ L LRRR A ASSS D DVVV 2 3vvv v v
#INIT #TBL #WP
NC NC NC VSS MODE A10(GPI4) R/#C(CLK) VDD NC #RESET A9(GPI3) A8(GPI2) A7(GPI1) A6(GPI0) A5(#WP) A4(#TBL) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 #OE(#INIT) #WE(#LFRAM VDD DQ7(RSV) DQ6(RSV) DQ5(RSV) DQ4(RSV) DQ3(LAD3) VSS DQ2(LAD2) DQ1(LAD1) DQ0(LAD0) A0(RSV) A1(RSV) A2(RSV) A3(RSV)
CLK GPI[4:0] ID[3:0] LAD[3:0]
32L STSOP
#LFRAM
R/#C A[10:0] DQ[7:0]
#OE #WE
VDD VSS RSV NC
-2-
W39V040A
6. FUNCTIONAL DESCRIPTION
Interface Mode Selection And Description
This device can be operated in two interface modes, one is Programmer interface mode, and the other is LPC interface mode. The MODE pin of the device provides the control between these two interface modes. These interface modes need to be configured before power up or return from #RESET. When MODE pin is set to high position, the device is in the Programmer mode; while the MODE pin is set to low position, it is in the LPC mode. In Programmer mode, this device just behaves like traditional flash parts with 8 data lines. But the row and column address inputs are multiplexed. The row address is mapped to the higher internal address A[18:11]. And the column address is mapped to the lower internal address A[10:0]. For LPC mode, It complies with the LPC Interface Specification Revision 1.0. Through the LAD[3:0] and #LFRAM to communicate with the system chipset .
Read(Write) Mode
In Programmer interface mode, the read(write) operation of the W39V040A is controlled by #OE (#WE). The #OE (#WE) is held low for the host to obtain(write) data from(to) the outputs(inputs). #OE is the output control and is used to gate data from the output pins. The data bus is in high impedance state when #OE is high. As in the LPC interface the "bit 1 of CYCLE TYPE+DIR" determines mode, the read or write. Refer to the timing waveforms for further details.
Reset Operation
The #RESET input pin can be used in some application. When #RESET pin is at high state, the device is in normal operation mode. When #RESET pin is at low state, it will halt the device and all outputs will be at high impedance state. As the high state re-asserted to the #RESET pin, the device will return to read or standby mode, it depends on the control signals.
Boot Block Operation and Hardware Protection at Initial - #TBL and #WP
There are two alternatives to set the boot block. Either 16K-byte or 64K-byte in the top location of this device can be locked as boot block, which can be used to store boot codes. It is located in the last 16K/64K bytes of the memory with the address range from 7C000(hex)/70000(hex) to 7FFFF(hex). See Command Codes for Boot Block Lockout Enable for the specific code. Once this feature is set the data for the designated block cannot be erased or programmed (programming lockout), other memory locations can be changed by the regular programming method. Besides the software method, there is a hardware method to protect the top boot block and other sectors. Before power on programmer, tie the #TBL pin to low state and then the top boot block will not be programmed/erased. If #WP pin is tied to low state before power on, the other sectors will not be programmed/erased. In order to detect whether the boot block feature is set on or not, users can perform software command sequence: enter the product identification mode (see Command Codes for Identification/Boot Block Lockout Detection for specific code), and then read from address 7FFF2(hex). If the DQ0/DQ1 output data is "1," the 64Kbytes/16Kbytes boot block programming lockout feature will be activated; if the DQ0/DQ1 output data is "0," the lockout feature will be inactivated and the boot block can be erased/programmed. But the hardware protection will override the software lock setting, i.e., while the #TBL pin is trapped at low state, the top boot block cannot be programmed/erased whether the output data, DQ0/DQ1 at the address 7FFF2, is "0" or "1". The #TBL will lock the whole 64Kbytes top boot Publication Release Date: December 19, 2002 Revision A2
-3-
W39V040A
block, it will not partially lock the 16Kbytes boot block. You can check the DQ2/DQ3 at the address 7FFF2 to see whether the #TBL/#WP pin is in low or high state. If the DQ2 is "0", it means the #TBL pin is tied to high state. In such condition, whether boot block can be programmed/erased or not will depend on software setting. On the other hand, if the DQ2 is "1", it means the #TBL pin is tied to low state, then boot block is locked no matter how the software is set. Like the DQ2, the DQ3 inversely mirrors the #WP state. If the DQ3 is "0", it means the #WP pin is in high state, then all the sectors except the boot block can be programmed/erased. On the other hand, if the DQ3 is "1", then all the sectors except the boot block are programmed/erased inhibited. To return to normal operation, perform a three-byte command sequence (or an alternate single-byte command) to exit the identification mode. For the specific code, see Command Codes for Identification/Boot Block Lockout Detection.
Chip Erase Operation
The chip-erase mode can be initiated by a six-byte command sequence. After the command loading cycle, the device enters the internal chip erase mode, which is automatically timed and will be completed within fast 100 mS (max). The host system is not required to provide any control or timing during this operation. If the boot block programming lockout is activated, only the data in the other memory sectors will be erased to FF(hex) while the data in the boot block will not be erased (remains as the same state before the chip erase operation). The entire memory array will be erased to FF(hex) by the chip erase operation if the "boot block programming lockout feature" is not activated. The device will automatically return to normal read mode after the erase operation completed. Data polling and/or Toggle Bits can be used to detect end of erase cycle.
Sector/Page Erase Operation
Sector/page erase is a six-bus cycles operation. There are two "unlock" write cycles, followed by writing the "set-up" command. Two more "unlock" write cycles then follows by the sector/page erase command. The sector/page address (any address location within the desired sector/page) is latched on the rising edge of R/C, while the command (30H/50H) is latched on the rising edge of #WE in programmer mode. Sector/page erase does not require the user to program the device prior to erase. When erasing a sector/page or sectors/pages the remaining unselected sectors/pages are not affected. The system is not required to provide any controls or timings during these operations. The automatic sector/page erase begins after the erase command is completed, right from the rising edge of the #WE pulse for the last sector/page erase command pulse and terminates when the data on DQ7, Data Polling, is "1" at which time the device returns to the read mode. Data Polling must be performed at an address within any of the sectors/pages being erased. Refer to the Erase Command flow Chart using typical command strings and bus operations.
Program Operation
The W39V040A is programmed on a byte-by-byte basis. Program operation can only change logical data "1" to logical data "0." The erase operation, which changed entire data in main memory and/or boot block from "0" to "1", is needed before programming. The program operation is initiated by a 4-byte command cycle (see Command Codes for Byte Programming). The device will internally enter the program operation immediately after the byte-program command is entered. The internal program timer will automatically time-out (50 S max. TBP) once it is completed and then return to normal read mode. Data polling and/or Toggle Bits can be used to detect end of program cycle. -4-
W39V040A
Hardware Data Protection
The integrity of the data stored in the W39V040A is also hardware protected in the following ways: (1) Noise/Glitch Protection: A #WE pulse of less than 15 nS in duration will not initiate a write cycle. (2) VDD Power Up/Down Detection: The programming and read operation is inhibited when VDD is less than 1.5V typical. (3) Write Inhibit Mode: Forcing #OE low or #WE high will inhibit the write operation. This prevents inadvertent writes during power-up or power-down periods. (4) VDD power-on delay: When VDD has reached its sense level, the devices will automatically time-out 5 mS before any write (erase/program) operation.
Data Polling (DQ7)- Write Status Detection
The W39V040A includes a data polling feature to indicate the end of a program or erase cycle. When the W39V040A is in the internal program or erase cycle, any attempts to read DQ7 of the last byte loaded will receive the complement of the true data. Once the program or erase cycle is completed, DQ7 will show the true data. Note that DQ7 will show logical "0" during the erase cycle, and become logical "1" or true data when the erase cycle has been completed.
Toggle Bit (DQ6)- Write Status Detection
In addition to data polling, the W39V040A provides another method for determining the end of a program cycle. During the internal program or erase cycle, any consecutive attempts to read DQ6 will produce alternating 0's and 1's. When the program or erase cycle is completed, this toggling between 0's and 1's will stop. The device is then ready for the next operation.
Multi-Chip Operation
Multiple devices can be wired on the single LPC bus. There are four ID pins can be used to support up to 16 devices. But in order not to violate the BIOS ROM memory space defined by Intel, Winbond W39V040A will only used 3 ID pins to allow up to 8 devices, 4Mbytes for BIOS code and 4Mbytes for registers memory space.
Register
There are two kinds of registers on this device, the General Purpose Input Registers and Product Identification Registers. Users can access these registers through respective address in the 4Gbytes memory map. There are detail descriptions in the sections below.
General Purpose Inputs Register
This register reads the states of GPI[4:0] pins on the W39V040A. This is a pass-through register, which can be read via memory address FFBxE100(hex). The "x" in the addresses represents the ID [3:0] pin straps. Since it is pass-through register, there is no default value.
-5-
Publication Release Date: December 19, 2002 Revision A2
W39V040A
GPI Register BIT 7-5 4 3 2 1 0 Reserved Read GPI4 pin status Read GPI3 pin status Read GPI2 pin status Read GPI1 pin status Read GPI0 pin status FUNCTION
Product Identification Registers
There is an alternative software method (six commands bytes) to read out the Product Identification in both the Programmer interface mode and the LPC interface mode. Thus, the programming equipment can automatically matches the device with its proper erase and programming algorithms. In the software access mode, a six-byte (or JEDEC 3-byte) command sequence can be used to access the product ID for programmer interface mode. A read from address 0000(hex) outputs the manufacturer code, DA(hex). A read from address 0001(hex) outputs the device code, 3D(hex)." The product ID operation can be terminated by a three-byte command sequence or an alternate one-byte command sequence (see Command Definition table for detail).
Identification Input Pins ID[3:0]
These pins are part of mechanism that allows multiple parts to be used on the same bus. The boot device should be 0000b. And all the subsequent parts should use the up-count strapping. Note that a 1M byte ROM will occupy two Ids. For example: a 1MByte ROM's ID is 0000b, the next ROM's ID is 0010b. These pins all are pulled down with internal resistor.
Memory Address Map
There are 8M bytes space reserved for BIOS Addressing. The 8M bytes are mapped into a single 4M system address by dividing the ROMs into two 4M byte pages. For accessing the 4M byte BIOS storage space, the ID[2:0] pins are inverted in the ROM and are compared to address lines [21:19]. ID[3] can be used as like active low chip-select pin. The 32Mbit address space is as below:
BLOCK 4M Byte BIOS ROM LOCK None ADDRESS RANGE FFFF, FFFFh: FFC0, 0000h
The ROM responds to 640K (top 512K + bottom 128K) byte pages based on the ID pins strapping according to the following table:
ID[2:0] PINS 000 001 010 011 ROM BASED ADDRESS RANGE FFFF, FFFFh: FFF8, 0000h & 000F, FFFFh: 000E, 00000h FFF7, FFFFh: FFF0, 0000h FFEF, FFFFh: FFE8, 0000h FFE7, FFFFh: FFE0, 0000h
-6-
W39V040A
Continued
100 101 110 111 FFDF, FFFFh: FFD8, 0000h FFD7, FFFFh: FFD0, 0000h FFCF, FFFFh: FFC8, 0000h FFC7, FFFFh: FFC0, 0000h
Table of Operating Modes
Operating Mode Selection - Programmer Mode
MODE PINS #OE VIL VIH X VIL X VIH #WE VIH VIL X X VIH X #RESET VIH VIH VIL VIH VIH VIH ADDRESS AIN AIN X X X X Dout Din High Z High Z/DOUT High Z/DOUT High Z DQ.
Read Write Standby Write Inhibit Output Disable
Operating Mode Selection - LPC Mode
Operation modes in LPC interface mode are determined by "cycle type" when it is selected. When it is not selected, its outputs (LAD[3:0]) will be disable. Please reference to the "Standard LPC Memory Cycle Definition".
Standard LPC Memory Cycle Definition
FIELD NO. OF CLOCKS DESCRIPTION
"0000b" appears on LPC bus to indicate the initial "010Xb" indicates memory read cycle; while "011xb" indicates memory write cycle. "X" mean don't have to care. Turned Around Time Address Phase for Memory Cycle. LPC supports the 32 bits address protocol. The addresses transfer most significant nibble first and least significant nibble last. (i.e. Address[31:28] on LAD[3:0] first , and Address[3:0] on LAD[3:0] last.) Synchronous to add wait state. "0000b" means Ready, "0101b" means Short Wait, "0110b" means Long Wait, "1001b" for DMA only, "1010b" means error, other values are reserved. Data Phase for Memory Cycle. The data transfer least significant nibble first and most significant nibble last. (i.e. DQ[3:0] on LAD[3:0] first , then DQ[7:4] on LAD[3:0] last.)
Start Cycle Type & Dir TAR Addr.
1 1 2 8
Sync.
N
Data
2
-7-
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Table of Command Definition
COMMAND DESCRIPTION Read Chip Erase Sector Erase Page Erase Byte Program Top Boot Block Lockout - 64K/16KByte Product ID Entry Product ID Exit Product ID Exit
(1) (1)
NO. OF Cycles 1 6 6 6 4 6 3 3 1
1ST CYCLE Addr. Data AIN DOUT 5555 AA 5555 AA 5555 AA 5555 AA 5555 AA 5555 AA 5555 AA XXXX F0
2ND CYCLE Addr. Data 2AAA 55 2AAA 55 2AAA 55 2AAA 55 2AAA 55 2AAA 55 2AAA 55
3RD CYCLE Addr. Data 5555 80 5555 80 5555 80 5555 A0 5555 80 5555 90 5555 F0
4TH CYCLE Addr. Data 5555 AA 5555 AA 5555 AA AIN DIN
5TH CYCLE Addr. Data 2AAA 55 2AAA 55 2AAA 55
6TH CYCLE Addr. Data 5555 10 SA PA
(3) (4)
30 50
5555 AA
2AAA 55
5555 40/70
Notes: 1. The cycle means the write command cycle not the LPC clock cycle. 2. The Column Address / Row Address are mapped to the Low / High order Internal Address. i.e. Column Address A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[18:11] 3. Address Format: A14 - A0 (Hex); Data Format: DQ7 - DQ0 (Hex) 4. Either one of the two Product ID Exit commands can be used. 5. SA: Sector Address
SA = 7XXXXh for Unique Sector7 (Boot Sector) SA = 6XXXXh for Unique Sector6 SA = 5XXXXh for Unique Sector5 SA = 4XXXXh for Unique Sector4 SA = 3XXXXh for Unique Sector3 SA = 2XXXXh for Unique Sector2 SA = 1XXXXh for Unique Sector1 SA = 0XXXXh for Unique Sector0
6. PA: Page Address
PA = 7FXXXh for Page 15 in Sector 7 PA = 7EXXXh for Page 14 in Sector 7 PA = 7DXXXh for Page 13 in Sector 7 PA = 7CXXXh for Page 12 in Sector 7 PA = 7BXXXh for Page 11 in Sector 7 PA = 7AXXXh for Page 10 in Sector 7 PA = 79XXXh for Page 9 in Sector 7 PA = 78XXXh for Page 8 in Sector 7 PA = 77XXXh for Page 7 in Sector 7 PA = 76XXXh for Page 6 in Sector 7 PA = 75XXXh for Page 5 in Sector 7 PA = 74XXXh for Page 4 in Sector 7 PA = 73XXXh for Page 3 in Sector 7 PA = 72XXXh for Page 2 in Sector 7 PA = 71XXXh for Page 1 in Sector 7 PA = 70XXXh for Page 0 in Sector 7 PA = 6FXXXh to 60XXXh for Page 15 to Page 0 In Sector 6 (Reference to the first column) PA = 5FXXXh to 50XXXh for Page 15 to Page 0 In Sector 5 (Reference to the first column) PA = 4FXXXh to 40XXXh for Page 15 to Page 0 In Sector 4 (Reference to the first column) PA = 3FXXXh to 30XXXh for Page 15 to Page 0 In Sector 3 (Reference to the first column) PA = 2FXXXh to 20XXXh for Page 15 to Page 0 In Sector 2 (Reference to the firs column) PA = 1FXXXh to 10XXXh for Page 15 to Page 0 In Sector 1 (Reference to the first column) PA = 0FXXXh to 00XXXh for Page 15 to Page 0 In Sector 0 (Reference to the first column)
-8-
W39V040A
Embedded Programming Algorithm
Start
Write Program Command Sequence (see below)
#Data Polling/ Toggle bit
Pause T BP
No Increment Address Last Address ? Yes Programming Completed
Program Command Sequence (Address/Command):
5555H/AAH
2AAAH/55H
5555H/A0H
Program Address/Program Data
-9-
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Embedded Erase Algorithm
Start
Write Erase Command Sequence (see below)
#Data Polling or Toggle Bit Successfully Completed
Pause T EC /TSEC/TPEC
Erasure Completed
Chip Erase Command Sequence (Address/Command): 5555H/AAH
Individual Sector Erase Command Sequence (Address/Command): 5555H/AAH
Individual Page Erase Command Sequence (Address/Command): 5555H/AAH
2AAAH/55H
2AAAH/55H
2AAAH/55H
5555H/80H
5555H/80H
5555H/80H
5555H/AAH
5555H/AAH
5555H/AAH
2AAAH/55H
2AAAH/55H
2AAAH/55H
5555H/10H
Sector Address/30H
PageAddress/50H
- 10 -
W39V040A
Embedded #Data Polling Algorithm
Start
VA = Byte address for programming = Any of the sector addresses within the sector being erased during sector erase operation = Any of the page addresses within the sector being erased during page erase operation = Any of the device addresses within the chip being erased during chip erase operation
Read Byte (DQ0 - DQ7) Address = VA
No
DQ7 = Data ? Yes Pass
Embedded Toggle Bit Algorithm
Start
Read Byte (DQ0 - DQ7) Address = Don't Care
No DQ6 = Toggle ? Yes Fail
- 11 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Software Product Identification and Boot Block Lockout Detection Acquisition Flow
Product Identification Entry (1)
Load data AA to address 5555
Identification and Boot Block Lockout Detection Mode (3)
Product
Product Identification Exit (6)
Load data AA to address 5555 (2)
Load data 55 to address 2AAA
Read address = 00000 data = DA
Load data 55 to address 2AAA
Load data 90 to address 5555
Read address = 00001 data = 3D
(2)
Load data F0 to address 5555
Pause 10 S
Read address = 00002 DQ0/DQ1 of data outputs = 1/0
(4)
Pause 10 S
(5) Normal Mode
Notes for software product identification/boot block lockout detection: (1) Data Format: DQ7 - DQ0 (Hex); Address Format: A14 - A0 (Hex) (2) A1 - A18 = VIL; manufacture code is read for A0 = VIL; device code is read for A0 = VIH. (3) The device does not remain in "identification and boot block lockout detection" mode if power down. (4) The DQ[3:0] to indicate the sectors protect status as below:
DQ0 0 1 64Kbytes Boot Block Unlocked by Software 64Kbytes Boot Block Locked by Software DQ1 16Kbytes Boot Block Unlocked by Software 16Kbytes Boot Block Locked by Software DQ2 64Kbytes Boot Block Unlocked by #TBL hardware trapping 64Kbytes Boot Block Locked by #TBL hardware trapping DQ3 Whole Chip Unlocked by #WP hardware trapping Except Boot Block Whole Chip Locked by #WP hardware trapping Except Boot Block
(5) The device returns to standard operation mode. (6) Optional 1-write cycle (write F0 hex at XXXX address) can be used to exit the "product identification/boot block lockout detection."
- 12 -
W39V040A
Boot Block Lockout Enable Acquisition Flow
Boot Block Lockout Feature Set Flow
Load data AA to address 5555 Load data 55 to address 2AAA Load data 80 to address 5555 Load data AA to address 5555 Load data 55 to address 2AAA Load data 40/70 to address 5555 40 to lock 64K Boot Block 70 to lcok 16K Boot Block
Pause T BP
Exit
- 13 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
7. DC CHARACTERISTICS
Absolute Maximum Ratings
PARAMETER Power Supply Voltage to VSS Potential Operating Temperature Storage Temperature D.C. Voltage on Any Pin to Ground Potential Transient Voltage (<20 nS) on Any Pin to Ground Potential RATING -0.5 to +4.6 0 to +70 -65 to +150 -0.5 to VDD +0.5 -1.0 to VDD +0.5 UNIT V C C V V
Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.
Programmer Interface Mode DC Operating Characteristics
(VDD = 3.3V 0.3V, VSS= 0V, TA = 0 to 70 C)
PARAMETER Power Supply Current Input Leakage Current Output Leakage Current Input Low Voltage Input High Voltage Output Low Voltage Output High Voltage
SYM. ICC ILI ILO VIL VIH VOL VOH
TEST CONDITIONS In Read or Write mode, all DQs open Address inputs = 3.0V/0V, at f = 3 MHz VIN = VSS to VDD VOUT = VSS to VDD IOL = 2.1 mA IOH = -0.1mA
LIMITS MIN. TYP. -0.3 2.0 2.4 10 MAX. 20 90 90 0.8 VDD +0.5 0.45 -
UNIT mA
A A V V V V
- 14 -
W39V040A
LPC Interface Mode DC Operating Characteristics
(VDD = 3.3V 0.3V, VSS= 0V, TA = 0 to 70 C)
PARAMETER Power Supply Current CMOS Standby Current TTL Standby Current Input Low Voltage Input Low Voltage of #INIT Pin Input High Voltage Input High Voltage of #INIT Pin Output Low Voltage Output High Voltage
SYM. ICC Isb1 Isb2 VIL VILI VIH VIHI
TEST CONDITIONS All Iout = 0A, CLK = 33 MHz, in LPC mode operation. #LFRAM = 0.9 VDD, CLK = 33 MHz, all inputs = 0.9 VDD / 0.1 VDD #LFRAM = 0.1 VDD, CLK = 33 MHz, all inputs = 0.9 VDD / 0.1 VDD -
LIMITS MIN. -0.5 -0.5 0.5 VDD 1.35V 0.9 VDD TYP. 12.5 5 3 MAX. 20 25 10 0.3 VDD 0.2 VDD VDD
+0.5
UNIT mA A mA V V V V V V
VDD
+0.5
VOL1 IOL = 1.5 mA VOH1 IOH = -0.5 mA
0.1 VDD VDD
Power-up Timing
PARAMETER Power-up to Read Operation Power-up to Write Operation SYMBOL TPU. READ TPU. WRITE TYPICAL 100 5 UNIT S mS
Capacitance
(VDD = 3.3V, TA = 25 C, f = 1 MHz)
PARAMETER I/O Pin Capacitance Input Capacitance
SYMBOL CI/O CIN
CONDITIONS VI/O = 0V VIN = 0V
MAX. 12 6
UNIT pF pF
- 15 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
8. PROGRAMMER INTERFACE MODE AC CHARACTERISTICS
AC Test Conditions
PARAMETER Input Pulse Levels Input Rise/Fall Time Input/Output Timing Level Output Load 0V to 0.9 VDD < 5 nS 1.5V/1.5V 1 TTL Gate and CL = 30 pF CONDITIONS
AC Test Load and Waveform
+3.3V
1.8K
DOUT
Input
30 pF (Including Jig and Scope) 0.9VDD 1.3K 0V Test Point 1.5V
Output
1.5V Test Point
- 16 -
W39V040A
AC Characteristics
Read Cycle Timing Parameters
(VDD = 3.3V 0.3V, VSS = 0V, TA = 0 to 70 C)
PARAMETER Read Cycle Time Row/Column Address Set Up Time Row/Column Address Hold Time Address Access Time Output Enable Access Time #OE Low to Act Output #OE High to High-Z Output Output Hold from Address Change
SYMBOL TRC TAS TAH TAA TOE TOLZ TOHZ TOH
W39V040A MIN. 300 50 50 0 0 MAX. 175 75 35 -
UNIT nS nS nS nS nS nS nS nS
Write Cycle Timing Parameters
PARAMETER Reset Time Address Setup Time Address Hold Time R/#C to Write Enable High Time #WE Pulse Width #WE High Width Data Setup Time Data Hold Time #OE Hold Time Byte Programming Time Sector/Page Erase Cycle Time Chip Erase Cycle Time SYMBOL TRST TAS TAH TCWH TWP TWPH TDS TDH TOEH TBP TPEC TEC MIN. 1 50 50 50 100 100 50 50 0 TYP. 35 20 75 MAX. 50 25 100 UNIT S nS nS nS nS nS nS nS nS S mS mS
Note: All AC timing signals observe the following guidelines for determining setup and hold times: (a) High level signal's reference level is input high and (b) low level signal's reference level is input low. Ref. to the AC testing condition.
Data Polling and Toggle Bit Timing Parameters
PARAMETER #OE to Data Polling Output Delay #OE to Toggle Bit Output Delay SYMBOL TOEP TOET W39V040A MIN. MAX. 40 40 UNIT nS nS
- 17 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
9. TIMING WAVEFORMS FOR PROGRAMMER INTERFACE MODE
Read Cycle Timing Diagram
#RESET
TRST Column Address TAS TAH
TRC Row Address TAS TAH Column Address Row Address
A[10:0]
R/#C VIH #WE #OE TAA TOH TOE High-Z DQ[7:0] TOLZ Data Valid High-Z TOHZ
Write Cycle Timing Diagram
TRST #RESET
A[10:0]
Column Address TAS TAH
Row Address TAS TAH
R/#C TCWH #OE TWP #WE TDS DQ[7:0] Data Valid TDH TWPH TOEH
- 18 -
W39V040A
Timing Waveforms for Programmer Interface Mode, continued
Program Cycle Timing Diagram
Byte Program Cycle A[10:0] (Internal A[18:0]) DQ[7:0] 5555 AA 2AAA 55 5555 A0
Programmed Address
Data-In
R/#C
#OE TWP #WE Byte 0 Byte 1 Byte 2 Byte 3 Internal Write Start TWPH TBP
Note: The internal address A[18:0] are converted from external Column/Row address Column/Row Address are mapped to the Low/High order internal address. i.e. Column Address A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[18:11].
#DATA Polling Timing Diagram
A[10:0] (Internal A[18:0]) R/#C An An An An
#WE
#OE TOEP DQ7 X X TBP or TEC X X
- 19 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Timing Waveforms for Programmer Interface Mode, continued
Toggle Bit Timing Diagram
A[10:0] R/#C
#WE
#OE TOET DQ6 T BP or T EC
Boot Block Lockout Enable Timing Diagram
SIX-byte code for Boot Block Lockout command A[10:0] (Internal A[18:0]) DQ[7:0] 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 5555 40/70
R/#C
#OE TWP #WE SB0 TWPH SB1 SB2 SB3 SB4 SB5 TWC
Note: The internal address A[18:0] are converted from external Column/Row address. Column/Row Address are mapped to the Low/High order internal address. i.e. Column Address A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[18:11]. When 40(hex) is loaded, the 64KByte are locked; while 70(hex) is loaded, the 16KByte is locked.
- 20 -
W39V040A
Timing Waveforms for Programmer Interface Mode, continued
Chip Erase Diagram
Six-byte code for 3.3V-only software chip erase A[10:0] (Internal A[18:0]) DQ[7:0] 5555 AA 2AAA 5555 80 5555 2AAA AA 55 5555 10
55
R/#C
#OE TWP #WE SB0 T WPH SB1 SB2 SB3 SB4 SB5 Internal Erasure Starts T EC
Note: The internal address A[18:0] are converted from external Column/Row address. Column/Row Address are mapped to the Low/High order internal address. i.e. Column Address A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[18:11].
Sector/Page Erase Timing Diagram
Six-byte code for 3.3V-only Sector/Page Erase A[10:0] (Internal A[18:0]) DQ[7:0] 5555 AA 2AAA 55 5555 80 5555 AA 2AAA 55 SA/PA 30/50
R/#C
#OE TWP #WE SB0 TWPH SB1 SB2 SB3 SB4 SB5 Internal Erase starts TEC
Note: The internal address A[18:0] are converted from external Column/Row address. Column/Row Address are mapped to the Low/High order internal address. i.e. Column Address A[10:0] are mapped to the internal A[10:0], Row Address A[7:0] are mapped to the internal A[18:11]. SA = Sector Address and PA = Page Address, Please ref. to the "Table of Command Definition"
- 21 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
10. LPC INTERFACE MODE AC CHARACTERISTICS
AC Test Conditions
PARAMETER Input Pulse Levels Input Rise/Fall Slew Rate Input/Output Timing Level Output Load 0.6 VDD to 0.2 VDD 1 V/nS 0.4 VDD / 0.4 VDD 1 TTL Gate and CL = 10 pF CONDITIONS
Read/Write Cycle Timing Parameters
(VDD = 3.3V 0.3V, VSS = 0V, TA = 0 to 70 C)
PARAMETER Clock Cycle Time Input Set Up Time Input Hold Time Clock to Data Valid
SYMBOL TCYC TSU THD TKQ
W39V040A MIN. 30 7 0 2 MAX. 11
UNIT nS nS nS nS
Note: Minimum and Maximum time has different loads. Please refer to PCI specification.
Reset Timing Parameters
PARAMETER VDD Stable to Reset Active Clock Stable to Reset Active Reset Pulse Width Reset Active to Output Float Reset Inactive to Input Active SYMBOL TPRST TKRST TRSTP TRSTF TRST MIN. 1 100 100 1 TYP. MAX. 50 UNIT mS S nS nS S
Note: All AC timing signals observe the following guidelines for determining setup and hold times: (a) High level signal's reference level is input high and (b) low level signal's reference level is input low. Ref. to the AC testing condition.
- 22 -
W39V040A
11. TIMING WAVEFORMS FOR LPC INTERFACE MODE
Read Cycle Timing Diagram
TCYC
CLK
#RESET
#LFRAM Start LAD[3:0]
Memory Read Cycle
TKQ Address A[31:28] A[27:24] A[23:20] A[19:16] A[15:12] A[11:8] Load Address in 8 Clocks A[7:4] A[3:0] TAR 1111b Sync
TSU THD Data D[3:0] D[7:4] TAR Next Start
0000b
0000b 010Xb 1 Clock 1 Clock
Tri-State 0000b 1 Clock
2 Clocks
Data out 2 Clocks
1 Clock
Write Cycle Timing Diagram
TCYC
CLK
#RESET
#LFRAM Start LAD[3:0] Memory Write Cycle Address A[31:28] A[27:24] A[23:20] A[19:16] A[15:12] A[11:8] A[7:4] A[3:0]
TSU THD Data D[3:0] D[7:4] TAR 1111b Tri-State Sync 0000b 1 Clock TAR Next Start 0000b 1 Clock
0000b 011Xb 1 Clock 1 Clock
Load Address in 8 Clocks
Load Data in 2 Clocks
2 Clocks
- 23 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Timing Waveforms for LPC Interface Mode, continued
Program Cycle Timing Diagram
CLK
#RESET
#LFRAM 1st Start LAD[3:0]
0000b Memory Write Cycle 011Xb XXXXb XXXXb XXXXb
Address
XXXXb X101b 0101b 0101b 0101b 1010b
Data
1010b
TAR 1111b Tri-State
Sync 0000b 1 Clock TAR
Start next command
1 Clock
1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
Write the 1st command to the device in LPC mode.
CLK #RESET
#LFRAM
Memory Write
2nd Start Cycle LAD[3:0]
0000b
Address
XXXXb XXXXb XXXXb XXXXb X010b 1010b 1010b 1010b 0101b
Data
0101b
TAR 1111b Tri-State
Sync 0000b 1 Clock TAR
Start next command
011Xb
1 Clock
1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
Write the 2nd command to the device in LPC mode.
CLK #RESET
#LFRAM
Memory Write
3rd Start Cycle LAD[3:0]
0000b
Address
XXXXb XXXXb XXXXb XXXXb X101b 0101b 0101b 0101b
Data
0000b 1010b
TAR 1111b Tri-State
Sync 0000b 1 Clock TAR
Start next command
011Xb
1 Clock
1 Clock
Load Address "5555" in 8 Clocks
Load Data "A0" in 2 Clocks
2 Clocks
1 Clock
Write the 3rd command to the device in LPC mode.
CLK #RESET
#LFRAM
Memory Write Cycle 011Xb A[31:28] A[27:24] A[23:20]
Internal program start 4th Start Address
A[19:16] A[15:12] A[11:8] A[7:4] A[3:0] D[3:0]
Data
D[7:4]
TAR 1111b Tri-State
Sync 0000b 1 Clock TAR Internal program start
LAD[3:0]
0000b
1 Clock
1 Clock
Load Ain in 8 Clocks
Load Din in 2 Clocks
2 Clocks
Write the 4th command(target location to be programmed) to the device in LPC mode.
- 24 -
W39V040A
Timing Waveforms for LPC Interface Mode, continued
#DATA Polling Timing Diagram
CLK
#RESET
#LFRAM Memory Write Cycle
A[31:28] A[27:24] A[23:20]
1st Start LAD[3:0]
Address
A[19:16] An[15:12] An[11:8] An[7:4] An[3:0]
Data Dn[3:0] Dn[7:4] 1111b
TAR Tri-State
Sync 0000b TAR
Start next command 0000b
0000b 011Xb
1 Clock 1 Clock
Load Address "An" in 8 Clocks
Write the last command(program or erase) to the device in LPC mode.
CLK
Load Data "Dn" in 2 Clocks
2 Clocks
1 Clock
1 Clock
#RESET
#LFRAM Start LAD[3:0] 0000b Memory Read Cycle 010Xb XXXXb XXXXb XXXXb Address
XXAn[17:16]
TAR
An[15:12] An[11:8] An[7:4] An[3:0]
Sync 0000b
Data XXXXb Dn7,xxx TAR
Next Start 0000b
1111b
Tri-State
1 Clock 1 Clock
Load Address in 8 Clocks
2 Clocks
1 Clock Data out 2 Clocks
1 Clock
Read the DQ7 to see if the internal write complete or not.
CLK
#RESET
#LFRAM Start LAD[3:0] 0000b Memory Read Cycle 010Xb
An[31:28] An[27:24] An[23:20]
Address
An[19:16] An[15:12] An[11:8] An[7:4] An[3:0]
TAR 1111b Tri-State
Sync 0000b
Data XXXXb Dn7,xxx TAR
Next Start 0000b
1 Clock 1 Clock
Load Address in 8 Clocks
2 Clocks
1 Clock Data out 2 Clocks
1 Clock
When internal write complete, the DQ7 will equal to Dn7.
- 25 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Timing Waveforms for LPC Interface Mode, continued
Toggle Bit Timing Diagram
CLK
#RESET
#LFRAM 1st Start LAD[3:0] Memory Write Cycle XXXXb XXXXb XXXXb Address
XXAn[17:16]
Data
An[15:12] An[11:8] An[7:4] An[3:0]
TAR 1111b Tri-State
Sync 0000b TAR
Start next command
0000b 011Xb
Dn[3:0]
Dn[7:4]
1 Clock 1 Clock
Load Address "An" in 8 Clocks
Write the last command(program or erase) to the device in LPC mode.
CLK
Load Data "Dn" in 2 Clocks
2 Clocks
1 Clock
1 Clock
#RESET
#LFRAM Start LAD[3:0] 0000b Memory Read Cycle 010Xb XXXXb XXXXb XXXXb Address XXXXb XXXXb XXXXb XXXXb XXXXb 1111b TAR Tri-State Sync 0000b Data XXXXb
X,D6,XXb
Next Start TAR 0000b
1 Clock 1 Clock
Load Address in 8 Clocks
2 Clocks
1 Clock Data out 2 Clocks
1 Clock
Read the DQ6 to see if the internal write complete or not.
CLK
#RESET
#LFRAM Start LAD[3:0] 0000b Memory Read Cycle 010Xb XXXXb XXXXb XXXXb Address XXXXb XXXXb XXXXb XXXXb XXXXb 1111b TAR Tri-State Sync 0000b Data XXXXb
X,D6,XXb
Next Start TAR 0000b
1 Clock 1 Clock
Load Address in 8 Clocks
2 Clocks
1 Clock
Data out 2 Clocks
1 Clock
When internal write complete, the DQ6 will stop toggle.
- 26 -
W39V040A
Timing Waveforms for LPC Interface Mode, continued
Boot Block Lockout Enable Timing Diagram
CLK #RESET
#LFRAM 1st Start LAD[3:0 ] 0000b
Memory Write Cycle 011Xb XXXXb XXXXb XXXXb
Address XXXXb X101b 0101b 0101b 0101b
Data 1010b 1010b 1111b
TAR Tri-State
Sync 0000b TAR
Start next command
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 1st command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 2nd Start Cycle LAD[3:0 ] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X010b 1010b 1010b 1010b Data 0101b 0101b 1111b TAR Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clocks
1 Clock
Write the 2nd command to the device in LPC mode.
CLK #RESET
#LFRAM
Memory Write 3rd Start Cycle 0000b 011Xb XXXXb XXXXb XXXXb
Address XXXXb X101b 0101b 0101b 0101b 0000b
Data 1000b
TAR 1111b Tri-State
Sync 0000b TAR
Start next command
LAD[3:0 ]
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "80" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 3rd command to the device in LPC mode.
CLK
#RESET
#LFRAM 4th Start LAD[3:0 ] 0000b
Memory Write Cycle 011Xb XXXXb XXXXb XXXXb
Address XXXXb X101b 0101b 0101b 0101b
Data 1010b 1010b 1111b
TAR Tri-State
Sync 0000b TAR
Start next command
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 4th command to the device in LPC mode.
CLK #RESET
#LFRAM
Memory Write 5th Start Cycle 0000b 011Xb XXXXb XXXX XXXXb
Address XXXXb X010b 1010b 1010b 1010b
Data 0101b 0101b
TAR 1111b Tri-State
Sync 0000b TAR
Start next command
LAD[3:0 ]
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 5th command to the device in LPC mode.
CLK #RESET #LFRAM Memory Write 6th Start Cycle LAD[3:0 ] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b Data 0000b 0100b 0111b TAR 1111b Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "5555" 8 Clocks
Load Data "40" or "70" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 6th command to the device in LPC mode.
- 27 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Timing Waveforms for LPC Interface Mode, continued
Chip Erase Timing Diagram
CLK #RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Start next command TAR
1st Start LAD[3:0] 0000b
Address XXXXb X101b 0101b 0101b 0101b
Data 1010b 1010b 1111b
TAR Tri-State
Sync 0000b
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 1st command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 2nd Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X010b 1010b 1010b 1010b Data 0101b 0101b 1111b TAR Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 2nd command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Start next command TAR
3rd Start LAD[3:0] 0000b
Address XXXXb X101b 0101b 0101b 0101b
Data 0000b 1000b
TAR 1111b Tri-State
Sync 0000b
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "80" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 3rd command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Start next command TAR
LAD[3:0]
4th Start 0000b
Address XXXXb X101b 0101b 0101b 0101b
Data 1010b 1010b 1111b
TAR Tri-State
Sync 0000b
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 4th command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Start next command TAR
5th Start LAD[3:0] 0000b
Address XXXXb X010b 1010b 1010b 1010b
Data 0101b 0101b
TAR 1111b Tri-State
Sync 0000b
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 5th command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b Data 0000b 0001b
Internal erase start TAR 1111b Tri-State Sync 0000b TAR Internal erase start
6th Start LAD[3:0] 0000b
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "10" in 2 Clocks
2 Clocks
1 Clock
Write the 6th command to the device in LPC mode.
- 28 -
W39V040A
Timing Waveforms for LPC Interface Mode, continued
Sector Erase Timing Diagram
CLK #RESET
#LFRAM Memory Write 1st Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b Data 1010b 1010b 1111b TAR Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 1st command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 2nd Start Cycle 0000b LAD[3:0] 011Xb XXXXb XXXXb XXXXb Address XXXXb X010b 1010b 1010b 1010b Data 0101b 0101b 1111b TAR Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 2nd command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 3rd Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Start next command TAR
Address XXXXb X101b 0101b 0101b 0101b
Data 0000b 1000b
TAR 1111b Tri-State
Sync 0000b
1 Clocks1 Clocks
Load Address "5555" in 8 Clocks
Load Data "80" in 2 Clocks
2 Clocks
1 Clocks
1 Clocks
Write the 3rd command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b Data 1010b 1010b 1111b TAR Tri-State Sync 0000b TAR Start next command
4th Start LAD[3:0] 0000b
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 4th command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 5th Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Data X010b 1010b 1010b 1010b 0101b 0101b TAR 1111b Tri-State Start next command TAR
Address XXXXb
Sync 0000b
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 5th command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Address
SA[18:16]
Internal erase start Data XXXXb XXXXb XXXXb XXXXb 0000b 0011b TAR 1111b Tri-State Sync 0000b TAR Internal erase start
6th Start LAD[3:0] 0000b
1 Clock 1 Clock
Load Sector Address in 8 Clocks
Load Data "30" in 2 Clocks
2 Clocks
1 Clock
Write the 6th command(target sector to be erased) to the device in LPC mode.
- 29 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
Timing Waveforms for LPC Interface Mode, continued
Page Erase Timing Diagram
CLK #RESET
#LFRAM Memory Write 1st Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b Data 1010b 1010b 1111b TAR Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 1st command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 2nd Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X010b 1010b 1010b 1010b Data 0101b 0101b 1111b TAR Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 2nd command to the device in LPC mode.
CLK #RESET
#LFRAM Memory Write 3rd Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b 0000b Data 1000b TAR 1111b Tri-State Sync 0000b TAR Start next command
1 Clocks1 Clocks
Load Address "5555" in 8 Clocks
Load Data "80" in 2 Clocks
2 Clocks
1 Clocks
1 Clocks
Write the 3rd command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Address XXXXb X101b 0101b 0101b 0101b Data 1010b 1010b 1111b TAR Tri-State Sync 0000b TAR Start next command
4th Start LAD[3:0] 0000b
1 Clock 1 Clock
Load Address "5555" in 8 Clocks
Load Data "AA" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 4th command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write 5th Start Cycle LAD[3:0] 0000b 011Xb XXXXb XXXXb XXXXb Address XXXXb X010b 1010b 1010b 1010b Data 0101b 0101b TAR 1111b Tri-State Sync 0000b TAR Start next command
1 Clock 1 Clock
Load Address "2AAA" in 8 Clocks
Load Data "55" in 2 Clocks
2 Clocks
1 Clock
1 Clock
Write the 5th command to the device in LPC mode.
CLK
#RESET
#LFRAM Memory Write Cycle 011Xb XXXXb XXXXb XXXXb Address
PA[18:16] PA[15:12]
Internal erase start Data XXXXb XXXXb XXXXb 0000b 0101b TAR 1111b Tri-State Sync 0000b TAR Internal erase start
6th Start LAD[3:0] 0000b
1 Clock 1 Clock
Load Page Address in 8 Clocks
Load Data "50" in 2 Clocks
2 Clocks
1 Clock
Write the 6th command(target page to be erased) to the device in LPC mode.
- 30 -
W39V040A
Timing Waveforms for LPC Interface Mode, continued
GPI Register Readout Timing Diagram
CLK #RESET
#LFRAM Memory Read Cycle 010Xb 1111b 1111b 1011b
Start LAD[3:0] 0000b
Address XXXXb 1110b 0001b 0000b 0000b 1111b
TAR Tri-State
Sync 0000b D[3:0]
Data D[7:4] TAR
Next Start 0000b
1 Clock 1 Clock
Load Address "FFBXE100(hex)" in 8 Clocks
2 Clocks
1 Clock Data out 2 Clocks
1 Clock
Note: Read the DQ[4:0] to capture the states(High or Low) of the GPI[4:0] input pins. The DQ[7:5] are reserved bits.
Reset Timing Diagram
VDD
TPRST
CLK TKRST #RESET TRST
F
TRSTP TRST
LAD[3:0]
#LFRAM
- 31 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
12. ORDERING INFORMATION
PART NO. W39V040AP W39V040AQ
Notes: 1. Winbond reserves the right to make changes to its products without prior notice. 2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.
ACCESS TIME (nS) 11 11
POWER SUPPLY CURRENT MAX. (mA) 20 20
STANDBY VDD CURRENT MAX. (mA) 10 10
PACKAGE 32L PLCC 32L STSOP
13. HOW TO READ THE TOP MARKING
Example: The top marking of 32-pin STSOP W39V040AQ
W39V040AQ 2138977A-A12 149OBSA
1st line: Winbond logo 2nd line: the part number: W39V040AQ 3rd line: the lot number 4th line: the tracking code: 149 O B SA 149: Packages made in '01, week 49 O: Assembly house ID: A means ASE, O means OSE, ... etc. B: IC revision; A means version A, B means version B, ... etc. SA: Process code
- 32 -
W39V040A
14. PACKAGE DIMENSIONS
32L PLCC
Symbol
HE E
Dimension in Inches
Dimension in mm
Min. Nom. Max.
0.140 0.020 0.105 0.026 0.016 0.008 0.547 0.447 0.044 0.490 0.390 0.585 0.485 0.075 0.110 0.028 0.018 0.010 0.550 0.450 0.050 0.510 0.410 0.590 0.490 0.090 0.115 0.032 0.022 0.014 0.553 0.453 0.056 0.530 0.430 0.595 0.495 0.095 0.004 0 10
Min. Nom. Max.
3.56 0.50 2.67 0.66 0.41 0.20 13.89 11.35 1.12 12.45 9.91 14.86 12.32 1.91 2.80 0.71 0.46 0.25 13.97 11.43 1.27 12.95 10.41 14.99 12.45 2.29 2.93 0.81 0.56 0.35 14.05 11.51 1.42 13.46 10.92 15.11 12.57 2.41 0.10 0 10
4
1
32
30
5
29
GD D HD
A A1 A2 b1 b c D E e GD GE HD HE L y Notes:
13
21
14
20
c
L A2 A
1. Dimensions D & E do not include interlead flash. 2. Dimension b1 does not include dambar protrusion/intrusio 3. Controlling dimension: Inches 4. General appearance spec. should be based on final visual inspection sepc.
Seating Plane
e
b b1 GE
A1 y
32L STSOP
HD D c
Symbol Dimension in Inches Dimension in mm Min. Nom. Max. Min. Nom. Max.
1.20 0.05 0.95 0.17 0.10 1.00 0.22 ----12.40 8.00 14.00 0.50 0.028 0.50 0.60 0.80 0.004 3 5 0.00 0 3 0.10 5 0.70 0.15 1.05 0.27 0.21
e
E A A1 A2 b c D E HD e L L1 Y
0.047 0.002 0.035 0.007 0.004 0.040 0.009 ----0.488 0.315 0.551 0.020 0.020 0.000 0 0.024 0.031 0.006 0.041 0.010 0.008
b
L L1
A1 A2 A
Y
- 33 -
Publication Release Date: December 19, 2002 Revision A2
W39V040A
15. VERSION HISTORY
VERSION A1 A2 DATE October 8, 2002 Dec. 19, 2002 PAGE 14 Initial Issued Modify PGM mode power supply current (Icc) parameter from 20 mA (typ.) to 10 mA (typ.) and 30 mA (max.) to 20 mA (max.) Modify LPC mode power supply current (Icc) parameter from 40 mA (typ.) to 12.5 mA (typ.) and 60 mA (max.) to 20 mA (max.) Modify CMOS standby current (Isb1) parameter from 20 A (typ.) to 5 A (typ.) and 100 A (max.) to 25 A (max.) DESCRIPTION
1, 15, 32
15
Headquarters
No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5665577 http://www.winbond.com.tw/
Winbond Electronics Corporation America
2727 North First Street, San Jose, CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798
Winbond Electronics (Shanghai) Ltd.
27F, 2299 Yan An W. Rd. Shanghai, 200336 China TEL: 86-21-62365999 FAX: 86-21-62365998
Taipei Office
9F, No.480, Rueiguang Rd., Neihu District, Taipei, 114, Taiwan, R.O.C. TEL: 886-2-8177-7168 FAX: 886-2-8751-3579
Winbond Electronics Corporation Japan
7F Daini-ueno BLDG, 3-7-18 Shinyokohama Kohoku-ku, Yokohama, 222-0033 TEL: 81-45-4781881 FAX: 81-45-4781800
Winbond Electronics (H.K.) Ltd.
Unit 9-15, 22F, Millennium City, No. 378 Kwun Tong Rd., Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064
Please note that all data and specifications are subject to change without notice. All the trade marks of products and companies mentioned in this data sheet belong to their respective owners.
- 34 -


▲Up To Search▲   

 
Price & Availability of W39V040A

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X